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† Universit̀a di Napoli ‘Federico II’, Dipartimento di Scienze Fisiche, Napoli, Italy
‡ INFN-Sezione di Napoli, I-80125 Napoli, Italy
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Abstract. The Cartan–Chevalley generators ofGq , G being a maximal singular sub-algebra
of A5, are written in terms of the generators ofGlq(6) using aq-boson realization. Then
a deformation scheme forA5 is presented starting fromGq , i.e. in a basis which manifestly
exhibits forq = 1 the content of the singular subalgebraG.

1. Introduction

The quantum algebrasGq or Uq(G), i.e. theq-deformed universal enveloping algebra of a
semisimple Lie algebraG (see, for instance, [1] for a more precise definition), are actually
a topic of active research both in physics and mathematics. The underlying idea in some
applications ofq-algebras is to use aq-deformed algebra instead of a Lie algebra to realize a
generalized dynamical symmetry. It is well known that the generalized dynamical symmetry
in many models of nuclear, hadronic, molecular and chemical physics is displayed through
embedding chains of algebras of the type

G ⊃ L ⊃ · · · ⊃ SO(3) ⊃ SO(2) (1.1)

whereSO(3) describes the angular momentum and, usually, the Lie algebras are realized
in terms of bosonic creation–annihilation operators. In this scheme the Hamiltonian of the
system is written as a sum, with constants to be determined from experimental data, of
invariants (usually second-order Casimir operators) of the Lie algebras of the chain. An
essential step to carry forward the program of application ofq-algebras asgeneralized
dynamical symmetryis to dispose on a formalism which allows one to build up chains
analogous to equation (1.1) replacing the Lie algebras by the deformed ones.

The simplest, not trivial, embedding chain is

SU(3) ⊃ SO(3). (1.2)

The SO(3) is the three-dimensional principal subalgebra ofSU(3). In [2] the existence
of a 3D principalq-subalgebra forGlq(n + 1) has been investigated, showing that such a
subalgebra exists only forn = 2 when the algebraic relations are restricted to the symmetric
representations, but the coproduct ofGlq(3) does not inducethe standard coproduct on the
generators of the 3D principal subalgebra. It is useful to emphasize that the definition of
the coproduct is essential in order to define the tensor product of spaces.
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In [3] a SOq(3), i.e. a deformedSO(3) in which the coproduct is imposed in the
standard way on the generators, has been defined and a ‘deformedGl(3)’ has been obtained
but, besides some ambiguity in the procedure, the ‘deformedGl(3)’ is equivalent to the
Drinfeld–JimboGlq(3) as an enveloping algebra, but not as a Hopf algebra. In [4] a
deformedU(3) algebra has been constructed in terms of boson operators transforming as a
vector underSOq(3), but also in this approach it is not clear how to endow the ‘deformed
U(3)’ algebra with a Hopf structure.

The root of the problem lies in the fact thatGq are well defined only in the Cartan–
Chevalley basis and this basis is not suitable to discuss embedding of any subalgebras
except trivial ones. Of course, as we are no longer dealing with Lie algebras, the term
embeddinghas to be intended in the loose sense that the generators of the embedded
deformed subalgebra are expressed in terms of the generators of the algebra, while the Hopf
structure can be inherited from that of the embedding algebra or imposed on the generators
of the embedded algebra.

In [5] it has been shown that, in the case where the rank ofL, the maximal singular
algebra ofG, is equal to the rank ofG minus one, it is possible, using a realization ofGq in
terms ofq-bosons and/or in terms of the so-calledq-fermions, to write the Cartan–Chevalley
generators ofLq in terms of the generators ofGq . Let us note that this result is not at all
a priori obvious due to the nonlinear structure ofGq . The kind of deformedG obtained,
if the standard coproduct is imposed on the generators ofLq in the standard way instead
of being derived from that ofGq , has also been discussed. However, many problems have
been left open, namely the possibility of generalizing the construction to the more general
case (the rank ofL lower than one with respect to the rank ofG) and extending it to any
maximal subalgebraJ of L. In this paper we address these questions in the case ofA5

which may be of physical interest as the well known Arima–Iachello model is based on this
algebra.

In section 2, in order to fix the notation, we recall the definition of theGq deformation
of the universal enveloping algebra of the complex Lie algebraG, in the Chevalley basis,
and the definition ofq-bosons which we shall use to write explicit realizations of theq-
algebras. In section 3 we show that the deformed maximal subalgebras ofA5, i.e.Uq(A2)

andUq(D3), can be written in terms of the generators ofGlq(6) and that this procedure can
also be extended to the case ofB2, the maximal subalgebra ofA4 ⊂ A5. In section 4 we
build the deformation ofA5 starting from the deformation of the subalgebra (theL-basis
deformation introduced in [5]). In section 5 a few conclusions, remarks and open questions
are presented.

2. Reminder of deformed algebras

Let us recall the definition ofGq associated with a simple Lie algebraG of rank r defined
by the Cartan matrix(aij ) in the Chevalley basis.Gq is generated by 3r elementse+i ,
fi = e−i andhi which satisfy(i, j = 1, . . . , r)

[e+i , e
−
j ] = δij [hi ]qi [hi, hj ] = 0 [hi, e

+
j ] = aij e+j [hi, e

−
j ] = −aij e−j (2.1)

where

[x]q = qx − q−x
q − q−1

(2.2)
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and qi = qdi , di being non-zero integers with their greatest common divisor equal to one
such thatdiaij = djaji . Furthermore, the generators have to satisfy the Serre relations∑

06n61−aij
(−1)n

[
1− aij
n

]
qi

(e+i )
1−aij−ne+j (e

+
i )

n = 0 (2.3)

where [
m

n

]
q

= [m]q !

[m− n]q ![n]q !
[n]q ! = [1]q [2]q . . . [n]q . (2.4)

Analogous equations hold whene+i is replaced bye−i . In the following we assume
hi = (hi)

+ and that the deformation parameterq is different from the roots of unity.
The algebraGq is endowed with a Hopf algebra structure. The action of the coproduct1,
antipodeS and co-unitε on the generators is as follows:

1(hi) = hi ⊗ 1+ 1⊗ hi 1(e±i ) = e±i ⊗ qhi/2i + q−hi/2i ⊗ e±i
S(hi) = −hi S(e±i ) = −q∓1

i e±i
ε(hi) = ε(e±i ) = 0 ε(1) = 1. (2.5)

As the coproduct in a Hopf algebra satisfies(gi, gj ∈ Gq)

1(gigj ) = 1(gi)1(gj ) (2.6)

it is essential to define which elements{gi} are the ‘basis’ ofGq .
The realization of theq-deformed universal enveloping algebras of the unitary and

symplectic series can be obtained [6] as a bilinear of the so-calledq-bosons [7]. In the
following we will use such a realization, so to fix the notation we recall the definition of
q-bosons [7] which we denote byb+i andbi :

bib
+
j − qδij b+j bi = δij q−Ni (2.7)

[Ni, b
+
j ] = δij b+j [Ni, bj ] = −δij bj [Ni,Nj ] = 0. (2.8)

It is useful to recall the following identities:

b+i bi =
qNi − q−Ni
q − q−1

bib
+
i =

qNi+1− q−Ni−1

q − q−1
. (2.9)

It may be useful to stress that, once having realized the generators of theq-algebraGq

as bilinears in theq-bosons, equations (2.1) and (2.3) follow from equations (2.7) and (2.8),
but the Hopf structure, equation (2.5), has to be imposed on the generators as a consistent
Hopf structure cannot be imposed on theq-bosons. For an explicit construction ofq-bosons
in terms of non-deformed standard bosonic oscillators see [8]. It turns out thatNi = b̂+i b̂i
whereb̂+b̂ are the non-deformed bosons.

3. Q-embedding chainsUq(A5) ⊃ Gq

In this section we try toq-deform algebraic chains underlying the interacting boson model
(IBM) [9] which is based on the three embedding chains:

SU(5) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2) (I)
SU(6)→ SU(3) ⊃ SO(3) ⊃ SO(2) (II) (3.1)

SO(6) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2) (III ).

In this paper we discuss only theq-embedding chainsUq(A4) ⊃ Uq(B2), Uq(A5) ⊃
Uq(A2) and Uq(A5) ⊃ Uq(D3), asUq(A5) ⊃ Uq(A4) is trivial. We point out that the
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deformation of the whole chain should require the discussion of the deformation of the real
forms of the algebras. See remarks at the end of section 3. In the following constructions
the q-algebras are all realized in terms ofq-boson operators.

3.1. Uq(A4) ⊃ Uq(B2)

The starting point is theq-algebraUq(B2) defined through the commutation rules

[E+i , E
−
j ] = δij [Hi ]qi (i, j = 1, 2)

[Hi,E
±
j ] = ±aijE±j (3.2)

whereaij is the Cartan matrix

aij =
(

2 −1
−2 2

)
andq1 = q2, q2 = q, and theq-Serre relations are

[E±1 , [E±1 , E
±
2 ]q2]q−2 = 0 [E±2 , [E±2 , [E±2 , E

±
1 ]q2]q−2] = 0. (3.3)

Let us introduce fiveq-bosonsb+i , bi (i = 1, . . . ,5), so we can write the generators as

H1 = N1−N2+N4−N5 (3.4)

H2 = 2(N2−N4) (3.5)

E+1 = {
√
qN1 + q−N1b+1 b2

√
qN2 + q−N2q−(N4−N5)

+
√
qN4 + q−N4b+4 b5

√
qN5 + q−N5q(N1−N2)}(q + q−1)−1 (3.6)

E−1 = {q−(N4−N5)
√
qN2 + q−N2b+2 b1

√
qN1 + q−N1

+q(N1−N2)
√
qN5 + q−N5b+5 b4

√
qN4 + q−N4}(q + q−1)−1 (3.7)

E+2 = qN4q−
1
2N3
√
qN2 + q−N2b+2 b3+ b+3 b4q

N2q−
1
2N3
√
qN4 + q−N4 (3.8)

E−2 = b+3 b2q
N4q−

1
2N3
√
qN2 + q−N2 + qN2q−

1
2N3
√
qN4 + q−N4b+4 b3. (3.9)

We impose the Hopf structure, equations (2.5), on these elements so obtainingUq(B2); note
that b+i bi+1 (i = 1, 2, 3, 4) are the generators ofUq(A4) [6], and that the

∑
i Ni commutes

with all the generators ofUq(A4). So we are really writing the generators ofUq(B2) in
terms ofGlq(5).

3.2. Uq(A5) ⊃ Uq(A2)

Also in this case we start from theq-algebraUq(A2) defined through the commutation rules

[E+i , E
−
j ] = δij [Hi ]q (i, j = 1, 2)

[Hi,E
±
j ] = ±aijE±j (3.10)

whereaij is the Cartan matrix

aij =
(

2 −1
−1 2

)
and theq-Serre relations are

[E±1 , [E±1 , E
±
2 ]q ]q−1 = 0 [E±2 , [E±2 , E

±
1 ]q ]q−1 = 0. (3.11)
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Introducing a set of sixq-bosonsb+i , bi (i = 1, . . . ,6) a realization ofUq(A2) can be
written:

H1 = 2N1− 2N4+N3−N5 (3.12)

H2 = N2−N3+ 2N4− 2N6 (3.13)

E+1 = b+3 b5q
(N1−N4) + [qN4q−

1
2N2
√
qN1 + q−N1b+1 b2+ b+2 b4q

N1q−
1
2N2
√
qN4 + q−N4]

×q−(N3−N5)/2 (3.14)

E−1 = q−(N3−N5)/2[b+2 b1q
N4q−

1
2N2
√
qN1 + q−N1 + qN1q−

1
2N2
√
qN4 + q−N4b+4 b2]

+q(N1−N4)b+5 b3 (3.15)

E+2 = b+2 b3q
−(N4−N6) + [qN6q−

1
2N5
√
qN4 + q−N4b+4 b5+ b+5 b6q

N4q−
1
2N5
√
qN6 + q−N6]

×q(N2−N3)/2 (3.16)

E−2 = q(N2−N3)/2[b+5 b4q
N6q−

1
2N5
√
qN4 + q−N4 + qN4q−

1
2N5
√
qN6 + q−N6b+6 b5]

+q−(N4−N6)b+3 b2. (3.17)

This Uq(A2) can be endowed with a Hopf structure in the standard way.

3.3. Uq(A5) ⊃ Uq(D3)

The algebraUq(D3) is defined by the commutation rules

[E+i , E
−
j ] = δij [Hi ]q (i, j = 1, 2, 3)

[Hi,E
±
j ] = ±aijE±j (3.18)

whereaij is the Cartan matrix

aij =
( 2 −1 0
−1 2 −1
0 −1 2

)
and theq-Serre relations are

[E±1 , [E±1 , E
±
2 ]q ]q−1 = 0 [E±2 , [E±2 , E

±
1 ]q ]q−1 = 0

[E±2 , [E±2 , E
±
3 ]q ]q−1 = 0 [E±3 , [E±3 , E

±
2 ]q ]q−1 = 0

[E±1 , E
±
3 ] = 0 [E±3 , E

±
1 ] = 0. (3.19)

Let us now write the generators ofUq(D3) in terms of sixq-bosonsb+1 , bi(i = 1, . . . ,6):

H1 = N2−N4+N3−N5 (3.20)

H2 = N1−N2+N5−N6 (3.21)

H3 = N2−N3+N4−N5 (3.22)

E+1 = b+2 b4q
(N3−N5)/2+ b+3 b5q

−(N2−N4)/2 (3.23)

E−1 = q(N3−N5)/2b+4 b2+ q−(N2−N4)/2b+5 b3 (3.24)

E+2 = b+1 b2q
(N5−N6)/2+ b+5 b6q

−(N1−N2)/2 (3.25)

E−2 = q(N5−N6)/2b+2 b1+ q−(N1−N2)/2b+6 b5 (3.26)

E+3 = b+2 b3q
(N4−N5)/2+ b+4 b5q

−(N2−N3)/2 (3.27)

E−3 = q(N4−N5)/2b+3 b2+ q−(N2−N3)/2b+5 b4. (3.28)

Let us impose the Hopf structure on these generators, so we obtainUq(D3).
Now let us make a few remarks:
(1) The generators are not invariant forq → q−1 and the change ofq with q−1 destroys

the commutation relations and/or theq-Serre relations.
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(2) It is by no meansa priori evident that theq-Serre relations are satisfied. For
instance, in the case ofUq(A2), we have to compute nineq-commutators of which only
two vanish and then compute 18q−1-commutators of which only nine vanish. Finally, there
is a cancellation between the remaining terms.

(3) We have written a realization ofUq(B2) andUq(D3) in terms ofq-bosons while in
[6] the realization ofUq(Bn) andUq(Dn) is obtained in terms of the so-calledq-fermions.

Further steps of deformation cannot be performed as it is not possible to expressUq(B1)

(i.e. a real form ofUq(A1) characterized by the property that its representations, for generic
q, are of odd dimension) in terms of the generators ofUq(B2), equations (3.4)–(3.9), or
of Uq(A2), equations (3.12)–(3.17), neitherUq(B2) in terms ofUq(D3), equations (3.20)–
(3.28). In the last case it is not possible to obtainq1 = q2 in the defining relations of
Uq(B2).

4. TheL-basis forUq(A5)

We present here an alternative deformation scheme, which has been called in [5] theL-
basisdeformation as it depends on the choice of the subalgebraL, for Uq(A5), whereL
is one of the maximal subalgebras ofA5 of section 3. This scheme allows one to discuss
‘embedding’ chains, in the loose sense explained in section 1, of the type

Gq ⊃ Lq (4.1)

L being a maximal subalgebra ofG.
We do not present here the general scheme, which has been introduced in [5], but we

limit ourselves to recall the main ideas and results, and then to apply them to the cases
considered in section 3.

In the case of semisimple Lie algebras, the algebraG can be constructed adding to the
subalgebraL a suitable set of elements belonging to the representation, in general reducible,
RL of L, which appears in the decomposition

adG→ adL ⊕ RL. (4.2)

For a classification and explicit construction of embeddings of semisimple Lie subalgebras
see [10], where reference to the pioneering work of Dynkin on the subject can be found.
Then it is natural to wonder if an analogue of this procedure can be defined in the case of
q-algebras, i.e. to start byLq and then to add some more suitable generators.

Let us consider the algebraLq defined in the Chevalley basis, i.e. defined by the set
{E±i , Hi}(i = 1, 2, . . . , l = rank ofL) satisfying equations (2.1), (2.3) and (2.5), and written
in terms of the Chevalley generators ofGq . Then one cannot invert the procedure, i.e. write
the generators ofGq , simply in function of those ofLq , but one has to add some more
generators and there is a large ambiguity in the choice of these further elements. In order
to reduce the arbitrariness of this choice, we remark that, at our knowledge, in all explicit
realizations of the deformed algebrasGq the commuting elements are the same as the
elements of the Cartan subalgebra ofG. So we impose aminimal deformation scheme
requiring:

(1) the Cartan subalgebra isleft unmodifiedin the deformation;
(2) if the commutator of two generatorsg+, g− ∈ G gives an elementk belonging to

the Cartan subalgebra, then the commutator of the corresponding deformed generators gives
[k]q .

Then we define a deformation scheme in which the Cartan subalgebra ofG, which
is partly in the Cartan subalgebra ofL, i.e. {Hi}, and partly inRL, namely{Kj }, is left
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invariant and we add to the generators ofLq the setKj , whose number is given by the
difference between the rank ofG and the rank ofL and which are chosen in a suitable
way, specified below. This deformation scheme will define a deformed algebra, which we
denoteGq in order to distinguish it by the Drinfeld–Jimbo deformed algebraGq , which
clearly containsthe deformed algebraLq , i.e. we build the chain

Gq ⊃ Lq. (4.3)

In order to defineGq we introduce the setKj such that

[Kj,E
±
i ] = ±X±j,i (4.4)

[Hk,X
±
j,i ] = ±akiX±j,i [Hi,Kj ] = 0 (4.5)

[X+j,i , X
−
j,i ] = [Hi ]qi (4.6)

where{E±i , Hi} are the generators ofLq which satisfy equations (2.1), (2.3) and (2.5).Gq
will be defined by the generators ofLq and by the elements(Kj ,X

±
j,i) which do not belong

to Lq , soa priori no coproduct, antipode or counit is defined on them. We extend the Hopf
structure fromLq to (Kj ,X

±
j,i) as follows:

1(Kj) = Kj ⊗ 1+ 1⊗Kj 1(X±j,i) = X±j,i ⊗ qHi/2i + q−Hi/2i ⊗X±j,i
S(Kj ) = −Kj S(X±j,i) = −q∓1

i X±j,i ε(Kj ) = ε(X±j,i) = 0. (4.7)

Really we have to impose the Hopf structure only on the elementKj ; the Hopf structure
on X±j,i can be derived from equations (2.5) and (2.6), the consistency of the coproduct
being ensured by equations (4.4) and (4.6). Let us emphasize once more that{Hi,Kj },
(i = 1, . . . , l) are linear combinations of the elements of the basis of the Cartan subalgebra
of G which are preserved unmodified in the deformation procedure.

As a result the ‘deformed algebraGq ’ obtained by this deformation scheme isnot the
usual (Drinfeld–Jimbo)Gq .

The deformation scheme we have just sketched requires that the generators ofLq are
expressed as functions of those ofGq . This is by no means evident ‘a priori ’, but we have
shown that it can be really done in the case ofUq(A5) using explicit constructions in terms
of q-bosons.

4.1. Uq(A4) ⊃ Uq(B2)

To the generators ofUq(B2) we add two elementsKj :

K1 = N1+N5 (4.8)

K2 = N3. (4.9)

We have

[K1, E
+
1 ] = X+1,1

X+1,1 = {
√
qN1 + q−N1b+1 b2

√
qN2 + q−N2q−(N4−N5)

−
√
qN4 + q−N4b+4 b5

√
qN5 + q−N5q(N1−N2)}(q + q−1)−1 (4.10)

[K1, E
+
2 ] = 0 [K2, E

+
1 ] = 0 [K2, E

+
2 ] = X+2,2

X+2,2 = −qN4q−
1
2N3
√
qN2 + q−N2b+2 b3+ b+3 b4q

N2q−
1
2N3
√
qN4 + q−N4 (4.11)
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4.2. Uq(A5) ⊃ Uq(A2)

To the generators ofUq(A2) we add three elementsKj :

K1 = N1−N3−N4+N6 (4.12)

K2 = N2+N3 (4.13)

K3 = N3+N5. (4.14)

We have

[K1, E
+
1 ] = X+1,1

X+1,1 = −b+3 b5q
(N1−N4) + [qN4q−

1
2N2
√
qN1 + q−N1b+1 b2

+b+2 b4q
N1q−

1
2N2
√
qN4 + q−N4]q−(N3−N5)/2 (4.15)

[K1, E
+
2 ] = X+1,2

X+1,2 = b+2 b3q
−(N4−N6) + [−qN6q−

1
2N5
√
qN4 + q−N4b+4 b5

−b+5 b6q
N4q−

1
2N5
√
qN6 + q−N6]q(N2−N3)/2 (4.16)

[K2, E
+
1 ] = X+2,1

X+2,1 = b+3 b5q
(N1−N4) + [−qN4q−

1
2N2
√
qN1 + q−N1b+1 b2

+b+2 b4q
N1q−

1
2N2
√
qN4 + q−N4]q−(N3−N5)/2 (4.17)

[K2, E
+
2 ] = 0 [K3, E

+
1 ] = 0 [K3, E

+
2 ] = X+3,2

X+3,2 = −b+2 b3q
−(N4−N6) + [−qN6q−

1
2N5
√
qN4 + q−N4b+4 b5

+b+5 b6q
N4q−

1
2N5
√
qN6 + q−N6]q(N2−N3)/2. (4.18)

4.3. Uq(A5) ⊃ Uq(D3)

To the generators ofUq(D3) we add two elementsKj :

K1 = N3+N4 (4.19)

K2 = N1+N6. (4.20)

We have

[K1, E
+
1 ] = X+1,1

X+1,1 = −b+2 b4q
(N3−N5)/2+ b+3 b5q

−(N2−N4)/2 (4.21)

[K1, E
+
3 ] = X+1,3

X+1,3 = −b+2 b3q
(N4−N5)/2+ b+4 b5q

−(N2−N3)/2 (4.22)

[K2, E
+
2 ] = X+2,2

X+2,2 = b+1 b2q
(N5−N6)/2− b+5 b6q

−(N1−N2)/2 (4.23)

[K1, E
+
2 ] = 0 [K2, E

+
1 ] = 0 [K2, E

+
3 ] = 0.

It is easy to verify that all equations (4.5) and (4.6) are verified. Then we can express
the generators of Drinfeld–JimboUq(A5)(Uq(A4)), see [6], in terms of the generators of
Uq(A2) andUq(D3)(Uq(B2)) and of the elementsKj andX±j,i . Explicitly we find
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4.1.1.Uq(A4) ⊃ Uq(B2).

e+1 = 1
2(q + q−1)(qN1 + q−N1)−

1
2 (E+1 +X+1,1)(qN2 + q−N2)−

1
2q(N4−N5) (4.24)

e+2 = 1
2q
−N4q

1
2N3(qN2 + q−N2)−

1
2 (E+2 −X+2,2) (4.25)

e+3 = 1
2(E

+
2 +X+2,2)q−N2q

1
2N3(qN4 + q−N4)−

1
2 (4.26)

e+4 = 1
2(q + q−1)(qN4 + q−N4)−

1
2 (E+1 −X+1,1)(qN5 + q−N5)−

1
2q(N2−N1). (4.27)

4.2.1.Uq(A5) ⊃ Uq(A2)

e+1 = 1
2q
−N4q

1
2N2(qN1 + q−N1)−

1
2 (E+1 −X+2,1)q(N3−N5)/2 (4.28)

e+2 = 1
2(E

+
2 +X+1,2)q(N4−N6) (4.29)

e+4 = − 1
2q
−N6q

1
2N5(qN4 + q−N4)−

1
2 (X+1,2+X+3,2)q(N3−N2)/2 (4.30)

e+5 = 1
2(E

+
2 +X+3,2)q−N4q

1
2N5(qN6 + q−N6)−

1
2q(N3−N2)/2. (4.31)

Now we see that

[e+2 , e
+
3 ]qq

N3 = 1
2(X

+
1,1+X+2,1)q−N1q

1
2N2(qN4 + q−N4)−

1
2q(N3−N5)/2.

Making the commutator of the above expression withe−2 = f2, we find

[ 1
2(X

+
1,1+X+2,1)q−N1q

1
2N2(qN4 + q−N4)−

1
2q(N3−N5)/2, e−2 ]q = −q(h2+2)e+3 q

N3 (4.32)

from which we can derivee+3 .

4.3.1.Uq(A5) ⊃ Uq(D3).

e+1 = 1
2(E

+
2 +X+2,2)q(N6−N5)/2 (4.33)

e+2 = 1
2(E

+
3 −X+1,3)q(N5−N4)/2 (4.34)

e+4 = 1
2(E

+
3 +X+1,3)q(N2−N3)/2 (4.35)

e+5 = 1
2(E

+
2 −X+2,2)q(N1−N2)/2. (4.36)

Also in this case we have

[e+2 , e
+
3 ]qq

N3 = 1
2(E

+
1 −X+1,1)q(N5−N3)/2.

Making the commutator of the above expression withe−2 we can derivee+3 .
The generatorsfi are obtained by Hermitian conjugation (assumingq real) of e+i .

5. Conclusions

We have shown that it is possible to write the Cartan–Chevalley generators ofUq(D3) and
Uq(A2) in terms of the generators ofGlq(6) and those ofUq(B2) in terms ofGlq(5), but
that it is not possible to extend further the procedure to obtainUq(B1) as was argued in
[5]. The realization of the generators ofGlq(6) in terms ofq-bosons has been essential in
our derivation. Our approach can be considered as a deformation of the Cartan–Chevalley
generators ofG, subalgebra ofA5, written in terms of those ofA5, using a boson realization.
We emphasize once more that in this way aq-boson realization of orthogonal deformed
algebrasUq(D3) and Uq(B2) has been obtained. An interesting point to investigate is
whether this procedure can be extended to the case ofUq(Dn) andUq(Bn) for any value of
n.
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We have then presented a deformation scheme ofA5 in a basis different from the
Chevalley basis, where the primitive elements on which the coproduct is imposed in the
standard way are the generators of its maximal singular subalgebra and some additive
elements which are in the Cartan subalgebra ofA5. In this way a deformedA5 is obtained in
a basis which, in the limitq = 1, manifestly exhibits the content of the singular subalgebra
G. The obtained deformed algebraA5 is equivalent, as an enveloping algebra, to the
Drinfeld–JimboUq(A5), defined in the Chevalley basis, but it is endowed by a different
Hopf structure. It should be recalled that theR universal matrix forUq(A5) is known in
the Cartan–Chevalley basis. It is not clear that an analogousR matrix can be defined in our
basis. A peculiar feature of this deformation scheme is the fact that the deformed subalgebra
Gq is not always invariant forq → q−1; only the commuting subalgebra is always invariant.
Another peculiar feature is the fact that in theL-basis we need theq-Serre relations only
on the subalgebraL. Indeed, once the deformed set of generators{E±i , Hi; i = 1, . . . , l},
satisfying equations (2.1) and (2.3), are introduced, the properties of the elements{Kj,X±j,i}
are uniquely defined by equations (4.4) and (4.7). However, let us emphasize that we indeed
require knowledge of the whole algebraG, while for the deformation in the Chevalley basis
only knowledge of the generators corresponding to the simple roots ofG is required. We
have also shown that the method cannot be applied to any embedding chain as

Gq ⊃ Lq ⊃ Jq.
It is also an interesting problem to study how the representations ofGq decompose

with respect toLq ; in this context the choice of the definition of the coproduct is relevant.
Many open problems are still present. In particular, the choice of the set of elementsKj
is somewhat arbitrary. In principle, we may generalize the approach presented here to the
q-superalgebras.
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