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Abstract. The Cartan-Chevalley generators@f, G being a maximal singular sub-algebra
of As, are written in terms of the generators 61, (6) using ag-boson realization. Then

a deformation scheme fofs is presented starting fron¥,, i.e. in a basis which manifestly

exhibits forg = 1 the content of the singular subalgeltFa

1. Introduction

The quantum algebras, or U,(G), i.e. theq-deformed universal enveloping algebra of a
semisimple Lie algebr& (see, for instance, [1] for a more precise definition), are actually

a topic of active research both in physics and mathematics. The underlying idea in some
applications of;-algebras is to useg@deformed algebra instead of a Lie algebra to realize a
generalized dynamical symmetry is well known that the generalized dynamical symmetry

in many models of nuclear, hadronic, molecular and chemical physics is displayed through
embedding chains of algebras of the type

GDOLD>---2>80(3) D502 (1.1)

where §O(3) describes the angular momentum and, usually, the Lie algebras are realized
in terms of bosonic creation—annihilation operators. In this scheme the Hamiltonian of the
system is written as a sum, with constants to be determined from experimental data, of
invariants (usually second-order Casimir operators) of the Lie algebras of the chain. An
essential step to carry forward the program of applicationy-@figebras agyeneralized
dynamical symmetrys to dispose on a formalism which allows one to build up chains
analogous to equation (1.1) replacing the Lie algebras by the deformed ones.

The simplest, not trivial, embedding chain is

SU@3) > SOQ). (1.2)

The SO(3) is the three-dimensional principal subalgebraSéf(3). In [2] the existence

of a 3D principalg-subalgebra foiGl, (n + 1) has been investigated, showing that such a
subalgebra exists only far = 2 when the algebraic relations are restricted to the symmetric
representations, but the coproduct@f, (3) does not inducé¢he standard coproduct on the
generators of the 3D principal subalgebra. It is useful to emphasize that the definition of
the coproduct is essential in order to define the tensor product of spaces.
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In [3] a SO,(3), i.e. a deformedSO(3) in which the coproduct is imposed in the
standard way on the generators, has been defined and a ‘defati@thas been obtained
but, besides some ambiguity in the procedure, the ‘deforGia@)’ is equivalent to the
Drinfeld-Jimbo GI,(3) as an enveloping algebra, but not as a Hopf algebra. In [4] a
deformedU (3) algebra has been constructed in terms of boson operators transforming as a
vector under§S 0, (3), but also in this approach it is not clear how to endow the ‘deformed
U (3)’ algebra with a Hopf structure.

The root of the problem lies in the fact that, are well defined only in the Cartan—
Chevalley basis and this basis is not suitable to discuss embedding of any subalgebras
except trivial ones. Of course, as we are no longer dealing with Lie algebras, the term
embeddinghas to be intended in the loose sense that the generators of the embedded
deformed subalgebra are expressed in terms of the generators of the algebra, while the Hopf
structure can be inherited from that of the embedding algebra or imposed on the generators
of the embedded algebra.

In [5] it has been shown that, in the case where the rank,othe maximal singular
algebra ofG, is equal to the rank o minus one, it is possible, using a realizationGf in
terms ofg-bosons and/or in terms of the so-calledermions, to write the Cartan—Chevalley
generators of, in terms of the generators @f,. Let us note that this result is not at all
a priori obvious due to the nonlinear structure @§. The kind of deformed5 obtained,
if the standard coproduct is imposed on the generators,ofh the standard way instead
of being derived from that o, has also been discussed. However, many problems have
been left open, namely the possibility of generalizing the construction to the more general
case (the rank of. lower than one with respect to the rank @) and extending it to any
maximal subalgebra of L. In this paper we address these questions in the casg; of
which may be of physical interest as the well known Arima—lachello model is based on this
algebra.

In section 2, in order to fix the notation, we recall the definition of thedeformation
of the universal enveloping algebra of the complex Lie algebran the Chevalley basis,
and the definition ofj-bosons which we shall use to write explicit realizations of ghe
algebras. In section 3 we show that the deformed maximal subalgebris Dé. U, (A2)
andU, (D), can be written in terms of the generatorsGif, (6) and that this procedure can
also be extended to the case Bf, the maximal subalgebra of, C As. In section 4 we
build the deformation ofAs starting from the deformation of the subalgebra (théasis
deformation introduced in [5]). In secticb a few conclusions, remarks and open questions
are presented.

2. Reminder of deformed algebras

Let us recall the definition of;, associated with a simple Lie algebaof rankr defined
by the Cartan matriXa;;) in the Chevalley basis.G, is generated by /3elementse;',
fi = e¢; andh; which satisfy(i, j =1,...,r)

[€+ EJ_] = Sij[hi]q, [hi, /’l]] = O [hl‘, 6‘;'_] = a,-je;' [/’li, e]_] = —aijej._ (21)

i
where

by =" — (2.2)
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andg; = g%, d; being non-zero integers with their greatest common divisor equal to one
such thatd;a;; = d;a;;. Furthermore, the generators have to satisfy the Serre relations

2. (_1)’1[1_017} (&) e (e)" = 0 (2.3)
0<n<1-ay no 1,
where
m [m],! '
[” L [m — n],'[n],! [n], [14[2]g - - - [n], (2.4)
Analogous equations hold whe#)" is replaced bye;. In the following we assume

h; = (h;))T and that the deformation parametgris different from the roots of unity.
The algebraG, is endowed with a Hopf algebra structure. The action of the coprafiuct
antipodeS and co-unite on the generators is as follows:

Ah)=hi @1+ 1Q h; Al =eF ®¢" + ¢ g et

Sthiy=—h;  S(e) =—q7 e}

e(h)) =e(e) =0 e(l) = 1. (2.5)
As the coproduct in a Hopf algebra satisfigs, g; € G,)

Agig) = A(gi)A(g)) (2.6)

it is essential to define which elemerjig} are the ‘basis’ ofG,.

The realization of thej-deformed universal enveloping algebras of the unitary and
symplectic series can be obtained [6] as a bilinear of the so-caledsons [7]. In the
following we will use such a realization, so to fix the notation we recall the definition of
g-bosons [7] which we denote by andb;:

mbj._q%b;bizaﬁq*M (2.7)
[Ni, b1 = &b [Ni, bj] = —8;;b; [Ni, N;] =0. (2.8)
It is useful to recall the following identities:
Ni _ =N Ni+1 _ ,—-Ni—1
b =1 "1 pibt =1 q (2.9)

g—q7t ’ q-—q-
It may be useful to stress that, once having realized the generators gfalgebraG,

as bilinears in the-bosons, equations (2.1) and (2.3) follow from equations (2.7) and (2.8),

but the Hopf structure, equation (2.5), has to be imposed on the generators as a consistent

Hopf structure cannot be imposed on thdosons. For an explicit construction g¢fbosons

in terms of non-deformed standard bosonic oscillators see [8]. It turns ouNthatBi*é,-

whereb*b are the non-deformed bosons.

1

3. Q-embedding chainsU,(As) D G4

In this section we try tg-deform algebraic chains underlying the interacting boson model
(IBM) [9] which is based on the three embedding chains:

SUB) D S0(5) DSO0B) DSO® )
SU®) — SUB) D SO0B) DS0? an 3.1)
SO(6) D SO0 DS0B)DS0®R (.

In this paper we discuss only thgembedding chaing/,(44) D U,(B2), U,;(As) D
U,(Az) and U, (As) D U,(Ds3), asU,(As) D U,(Ay) is trivial. We point out that the
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deformation of the whole chain should require the discussion of the deformation of the real
forms of the algebras. See remarks at the end of section 3. In the following constructions
the g-algebras are all realized in terms ¢fboson operators.

3.1.U,(As) D Uy(Bo)
The starting point is thg-algebral, (B>) defined through the commutation rules
[Ef, E[] = 68;[Hi],, i.j=12
[Hi, E] = +a;; E} (3.2)

wheregq;; is the Cartan matrix

2 -1
“W=\-2 2

andgi = ¢2, g2 = ¢, and theg-Serre relations are

[EF [ET, E]el,2 =0 [E5, [ES,[E5, Ef],2],-2] = 0. (3.3)
Let us introduce fivej-bosonsb;', b; (i =1, ...,5), so we can write the generators as

Hy = N1 — N+ N4y — Ns (3.4)
Hy = 2(N2 — Na) (3.5)
Ef = (V™ +q~Mbybay/q"e + g~ Neg ™M

+v/a% + g Nabfbs/gNs + g Vg Mg +g7H 7 (3.6)
Ef = (g~ g+ g b by /g + g

+q ™ NN + g NobEbay/qNe + g VY (g + 9D 3.7)

Ey = q™q "/q™ +q7%bJ by + bibag g2 M 4 g~ (3.8)
EZ_ = b;quN4q7%N3\/m + quqi%N:*\/mbIbs_ (39)

We impose the Hopf structure, equations (2.5), on these elements so ob@jiByg; note
thatbl.*biH (i = 1,2, 3,4) are the generators @f,(A4) [6], and that thed ", N; commutes
with all the generators ot/,(A4). So we are really writing the generators Gjf(B.) in

terms ofG/,(5).

3.2. U,(As) D U, (A2)

Also in this case we start from thgalgebral, (A») defined through the commutation rules
[E, E[]=68;[Hi, (i.j=12
[Hl', Eji] = :l:aijEJi (310)

whereaq;; is the Cartan matrix

2 -1
“W=\-1 2

and theg-Serre relations are

[ET.[Ef, E5],),~ =0 [E5,[ES, ET)yl,+ = 0. (3.11)
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Introducing a set of six;-bosonsbi*, b; (i =1,...,6) a realization ofU,(A») can be
written:
Hy = 2N, — 2N4+ N3 — Nsg (3.12)
Hy; = N, — N3+ 2N4 — 2Ng (3.13)
EI‘ — bg‘bsq(leNU + [qN4q*%N2 /qu + qulbi'bz + bz_b4quq7%N2 /qN4 + q*NA]
x g~ (NamNs)/2 (3.14)
EI — q*(stNs)/Z[bz-blqM;qf%Nz /qu +q—N1 + qN1q7%N2 /qN4 +q—N4be2]
+q M N0 p L by (3.15)
E; _ b+b3q (Na—Ne) [qNGq 3N / N, ~|—q—N4bIb5 +b;b6qN"q 3 ,/ No 4 g—Ne]
xg(Ne=No)/2 (3.16)
E; g Na)/2[b+b4qqu aNs JgNe 4 g=Ne 4 gNog~ 3Ns_/ gNe +q—N5b+b5]
+q SN Ne>b+b (3.17)

This U, (A2) can be endowed with a Hopf structure in the standard way.

3.3. U, (As) D U, (D3)
The algebral, (D3) is defined by the commutation rules

[ES, E; ] =6;[Hi], i,j=1273

[H:. E] = +a;; Ef (3.18)
wheregq;; is the Cartan matrix

2 -1 0
a;j = (—1 2 —1)
o -1 2

and theg-Serre relations are
[Ef [Ef, E5)),2=0 [E5,[ES, Ef]yl,1 =0
[E5,[E5, E3]yl,» =0 [E3, [E3. Exlyly =0

[Ef, Ef]1 =0 [EE, Ef]=0. (3.19)
Let us now write the generators 6f, (Ds) in terms of sixg-bosonsb;, b;(i =1,..., 6):
Hy = N — Ngs+ N3 — Ns (3.20)
Hy; = N1— N2+ N5 — Ng (3:21)
Hz = N; — N3+ N4 — Ns (3.22)
Ef = bybag™NN9/2 4 pTbgg= N N/2 (3.23)
Ef = g™ N2ty 4 g=Nem N 2t g (3.24)
E;‘ _ bi-bzq(NrNe)/Z + b;beq*(Ner)/z (3.25)
Ey = qWMNs N2yt 4 g= NN/ 2p g (3.26)
E;— — b;b;,»q(NrNS)/z + bzbsq*(szNs)/z (3.27)
E; = qMNN92ptpy 4 g~ Ve Nal2ptp, (3.28)

Let us impose the Hopf structure on these generators, so we djjaig).

Now let us make a few remarks:

(1) The generators are not invariant fpr~ ¢~ and the change af with ¢~* destroys
the commutation relations and/or theSerre relations.
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(2) It is by no meansa priori evident that theg-Serre relations are satisfied. For
instance, in the case df,(A2), we have to compute ning-commutators of which only
two vanish and then compute %8'-commutators of which only nine vanish. Finally, there
is a cancellation between the remaining terms.

(3) We have written a realization @f,(B2) andU,(Ds) in terms ofg-bosons while in
[6] the realization ofU,(B,) andU,(D,) is obtained in terms of the so-callgdfermions.

Further steps of deformation cannot be performed as it is not possible to ekpiEss
(i.e. a real form ofU, (A1) characterized by the property that its representations, for generic
g, are of odd dimension) in terms of the generatorsUptB,), equations (3.4)—(3.9), or
of U, (A), equations (3.12)—(3.17), neith&f, (B,) in terms ofU,(D3), equations (3.20)—
(3.28). In the last case it is not possible to obtain= ¢ in the defining relations of
Uq(BZ)-

4. The L-basis for U, (As)

We present here an alternative deformation scheme, which has been called in [5] the
basisdeformation as it depends on the choice of the subalgébrar U, (As), whereL

is one of the maximal subalgebras 4§ of section 3. This scheme allows one to discuss
‘embedding’ chains, in the loose sense explained in section 1, of the type

G, DL, (4.1)

L being a maximal subalgebra 6f.

We do not present here the general scheme, which has been introduced in [5], but we
limit ourselves to recall the main ideas and results, and then to apply them to the cases
considered in section 3.

In the case of semisimple Lie algebras, the algebrean be constructed adding to the
subalgebrd. a suitable set of elements belonging to the representation, in general reducible,
R, of L, which appears in the decomposition

ad; — ad, ® R;. (4.2)

For a classification and explicit construction of embeddings of semisimple Lie subalgebras
see [10], where reference to the pioneering work of Dynkin on the subject can be found.
Then it is natural to wonder if an analogue of this procedure can be defined in the case of
g-algebras, i.e. to start bg, and then to add some more suitable generators.

Let us consider the algebig, defined in the Chevalley basis, i.e. defined by the set
{Eii, H:}i=1,2,...,1 =rank of L) satisfying equations (2.1), (2.3) and (2.5), and written
in terms of the Chevalley generators@jf. Then one cannot invert the procedure, i.e. write
the generators o&,, simply in function of those of.,, but one has to add some more
generators and there is a large ambiguity in the choice of these further elements. In order
to reduce the arbitrariness of this choice, we remark that, at our knowledge, in all explicit
realizations of the deformed algebrék, the commuting elements are the same as the
elements of the Cartan subalgebra®@f So we impose aninimal deformation scheme
requiring:

(1) the Cartan subalgebra lisft unmodifiedn the deformation;

(2) if the commutator of two generatogs’, g~ € G gives an element belonging to
the Cartan subalgebra, then the commutator of the corresponding deformed generators gives
[],.

Then we define a deformation scheme in which the Cartan subalgebta wahich
is partly in the Cartan subalgebra &f i.e. {H;}, and partly inR;, namely{K;}, is left
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invariant and we add to the generatorsIgf the setkK;, whose number is given by the
difference between the rank @ and the rank ofL and which are chosen in a suitable
way, specified below. This deformation scheme will define a deformed algebra, which we
denoteg, in order to distinguish it by the Drinfeld-Jimbo deformed algebra which
clearly containsthe deformed algebra,, i.e. we build the chain

G, D L,. (4.3)

In order to defingj, we introduce the sek; such that

[K;. Ef] = £X7; (4.4)
[Hi, X] = +an X}, [Hi, K;] =0 (4.5)
[ i X;,] = [Hi]qi (4.6)

Where{Ei H;} are the generators df, which satisfy equations (2.1), (2.3) and (2.5),

will be defined by the generators &f, and by the elementg(,, Xi) which do not belong

to L,, soa priori no coproduct, antipode or counit is defined on them. We extend the Hopf
structure fromL, to (Kj, Xi) as follows:

AK)=K ®1+1®K; AXE) =X 04" + 47" @ XF,
S(Kj)=-K;  SX;)=-¢"'X;;  eK)=eX;) =0 4.7)

Really we have to impose the Hopf structure only on the eleenthe Hopf structure
on Xil can be derived from equations (2.5) and (2.6), the consistency of the coproduct
belng ensured by equations (4.4) and (4.6). Let us emphasize once mofgZthat},

(i =1,...,1) are linear combinations of the elements of the basis of the Cartan subalgebra
of G which are preserved unmodified in the deformation procedure.

As a result the ‘deformed algeb(g’ obtained by this deformation schemerist the
usual (Drinfeld—Jimbo)G,,.

The deformation scheme we have just sketched requires that the generalQrsuef
expressed as functions of those®f. This is by no means eviderd priori’, but we have
shown that it can be really done in the casdigfAs) using explicit constructions in terms
of g-bosons.

4.1. U,(As) D Uy(B2)
To the generators d¥,(B2) we add two elementk;:

K1 = N1+ Ng (48)
K> = Ns. (4.9)

We have
[K1, Ef] = X7,
Xi = (Vg™ + q=Mb ba/qNe + g—Neg=NamNe)

—VaYe +qNabfbsy/q"s + q~Noq M TNy (g + g 7H T (4.10)
[Ky Ef1=0  [K2 E{1=0  [Ka Ef]l=X{,

X5, = —q"q N /gNe + g NebT by + bibagNeg TN JqNe 4 g (4.11)
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4.2.U,(As) D U, (Ay)

To the generators d¥/,(A») we add three elements;:

K1 = N1 — N3— Ns+ Ng (4.12)
Ko = No+ N3 (4.13)
K3 = N3+ Ns. (4.14)

We have
[Kla E;—] = XIl

Xiy = —bibsg™ N0 1 [gMg N JgM 4 =Mk b,

+b3 bag™rq Ve q e + g~ NelqmNomNe)/2 (4.15)
X, = b3baq™ NN 4 [—gNeg 2N [gNe 1 g=Nebf s

—bg beq™tq 25\ gNo + g Vel Mo No)2 (4.16)

X3, = bibsqg ™ 4 [—qNeq /g + g Vib{ b,

+b3 bag™rq ™2V g + g~ NelqmNomNo)/2 (4.17)
[K2, E3]1=0 [Ks, Ef]=0 [Ks, E3] = X3,
X{p = —bibag ™M 4 [—g"oq 3NN 1 gV bs

+bE beg g™ gNe + g~ Ne]g Va2, (4.18)

4.3.U,(As) D U, (D)

To the generators d¥/,(D3) we add two elementg;:

K1 = N3+ Ny (4.19)
K> = N1 + Ng. (420)

We have

X{1 = —b3bag™ N2 4 bl bgg™ NN/ (4.21)
(K1, E; 1= XIs
X{g=—b3bsqM N2 4 bibgg™ NN/ (4.22)
[K2, E;] = X3,
X3, = bibyg™NsNOZ — plpgg=MN2/2 (4.23)

(K1, EJ]1=0 [K2, Ef]=0 [K2, EF] =0.

It is easy to verify that all equations (4.5) and (4.6) are verified. Then we can express
the generators of Drinfeld—Jimbb, (As)(U,(A4)), see [6], in terms of the generators of
U,(Ap) andU,(D3)(U,(By)) and of the element&X; and inl Explicitly we find
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4.1.1.U,(As) D Uy (By).

ef = 3@ +a7 @ + a7 HET + X{D @V + g7 2 (4.24)
ef =17 MgV (g™ + g7V T2 (ES — X5, (4.25)
ef = LES + X5 pq Vg2 g + V)2 (4.26)
ef = 3g+a D@ + gV HET — X{ (g + g Vo) g NN, (4.27)

4.2.1.U,(As) D U,(A2)

ef =30 Vg2 (@M + g7 HET — X g M (4.28)
€3 = 3(EF + X{ g™ (4.29)
ex = —3a7 g (N + V) TE(XT, + X p)q NN (4.30)
ed = J(EF + X$)q Meq2 Mo (g + g Vo) T2g MmN/, (4.31)

Now we see that
— 1 — _1 _
[e, e3lqq™ = 3(XT1 + X3 1)g Vg2 (g™ 4+ g7 T2 g/,
Making the commutator of the above expression wifh= f>, we find
_ 1 _ _1 _ —
[3(XT+ X300 g2 (g + V) 72NN o], = —q "2t Ded g (4.32)

from which we can derive; .

4.3.1.U,(As) D U, (D).

ef = 3(EF + X$,)qNe N9/ (4.33)
e = 3(EJ — X{5)qMeNo/2 (4.34)
ef = J(Ef + X{pqM N2 (4.35)
e = 3(Ef — X3pg M2, (4.36)

Also in this case we have
—N3)/2
[€2+7 63+]qu3 = %(Ef - X1+,1)‘1(N5 N2,

Making the commutator of the above expression wifhwe can deriver].
The generatorg; are obtained by Hermitian conjugation (assumingeal) of e;".

5. Conclusions

We have shown that it is possible to write the Cartan—Chevalley generatéfg Dg) and

U,(A») in terms of the generators @/, (6) and those oU,(B>) in terms of G/, (5), but

that it is not possible to extend further the procedure to obtaifB;) as was argued in

[5]. The realization of the generators 6%,(6) in terms ofg-bosons has been essential in

our derivation. Our approach can be considered as a deformation of the Cartan—Chevalley
generators o6, subalgebra ofis, written in terms of those afls, using a boson realization.

We emphasize once more that in this way-#oson realization of orthogonal deformed
algebrasU,(D3) and U,(B,) has been obtained. An interesting point to investigate is
whether this procedure can be extended to the cagg @,) andU, (B,) for any value of

n.
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We have then presented a deformation schemeipin a basis different from the
Chevalley basis, where the primitive elements on which the coproduct is imposed in the
standard way are the generators of its maximal singular subalgebra and some additive
elements which are in the Cartan subalgebrad©fIn this way a deformeds is obtained in
a basis which, in the limi = 1, manifestly exhibits the content of the singular subalgebra
G. The obtained deformed algebrss is equivalent, as an enveloping algebra, to the
Drinfeld-JimboU, (4s), defined in the Chevalley basis, but it is endowed by a different
Hopf structure. It should be recalled that tReuniversal matrix forU, (As) is known in
the Cartan—Chevalley basis. It is not clear that an analogoonatrix can be defined in our
basis. A peculiar feature of this deformation scheme is the fact that the deformed subalgebra
g, is not always invariant foy — ¢~1; only the commuting subalgebra is always invariant.
Another peculiar feature is the fact that in thebasis we need thg-Serre relations only
on the subalgebra. Indeed, once the deformed set of genera(ﬂrﬁ, H;i=1,...,1}
satisfying equations (2.1) and (2.3), are introduced, the properties of the ele{rﬁgamgfi}
are uniquely defined by equations (4.4) and (4.7). However, let us emphasize that we indeed
require knowledge of the whole algebtg while for the deformation in the Chevalley basis
only knowledge of the generators corresponding to the simple roots isfrequired. We
have also shown that the method cannot be applied to any embedding chain as

G,DLyD U,

It is also an interesting problem to study how the representationg, alecompose
with respect toL,; in this context the choice of the definition of the coproduct is relevant.
Many open problems are still present. In particular, the choice of the set of eleignts
is somewhat arbitrary. In principle, we may generalize the approach presented here to the
g-superalgebras.
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